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LIMIT LOADS OF EDGE-RESTRAINED SHALLOW
SHELLS
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Abstract-Limit analysis of edge-restrained rigid, perfectly plastic shallow spherical shells
under external pressure is considered. A numerical solution, based on the von Mises yield
criterion, is shown to be in good agreement with existing approximate solutions based on the
Tresca yield criterion.
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Arbitrary constants
Shell parameter, equation (3)
Shell thickness
Shell parameter, equation (3)
Bending stress resultants in rand () direction, resp.
Non-dimensional bending stress resultants
Fully plastic bending moment
Membrane stress resultants in rand () direction, resp.
Non-dimensional membrane stress resultants
Fully plastic membrane force
Lateral uniform pressure
non-dimensional pressure, equation (3)
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Transverse shear resultant
Non-dimensional transverse shear resultant
coordinate directions
Shell radii, Fig. 1
Shell displacements, Fig. 1
Non-dimensional shell displacements
Shell parameter, equation (3)
Rotation of shell normal
Non-dimensional radial shell coordinate
Flow parameter
Yield stress in simple tension.

INTRODUCTION

In a recent paper Jones and Ich[l] have considered the limit analysis of edge-restrained
shallow shells under external pressure. They give complete solutions for various approximate
yield surfaces based on the Tresca yield criterion. The resulting yield point load solutions
are upper and lower bounds on the exact Tresca yield point loads. Apparently no exact
solution for either Tresca or von Mises criterion exists for this problem.

It is the intent of this paper to give a solution of the title problem for a yield surface which
is based on the von Mises criterion, and to compare the resulting yield point loads to the
bounded solutions given in[l].
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To indicate the usefulness of the method of analysis of the present problem, solutions
for shells with unrestrained edges are briefly reviewed and compared with experimental
data available.

PROBLEM FORMULATION

The limit analysis of the shallow shell whose geometry is shown in Fig. I. is considered.
The shell material is assumed rigid, perfectly plastic and obeys the von Mises yield criterion.
The loading consists of a uniformly distributed lateral pressure p and the shell contour is
hinge supported. It is further assumed that the shell contour is restrained to move in the
inplane direction.

Fig. 1. Geometry of edge-restrained shell.

The analysis follows the usual rules of classical limit analysis[2], and is restricted to thin,
shallow shells. These shells have the following geometrical restrictions:

and

c:;£ 0'4 (I)

(2)

The value of c = 0'4 as a limiting H shallowness" parameter has been suggested in[3]. For
larger values ofc the use of shallow shell equations may introduce errors of unknown magni
tude into the analysis. For IX > / s the use of thin shell equations becomes questionable and
for IX < -to stability considerations may be encountered. Equation (2) is therefore given here
as an approximate range of IX for which the present analysis is intended.

For convenience the following non-dimensional notation is introduced at this point:
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GOVERNING EQUATIONS

The equations, describing the behaviour of the shell, are taken from[4]. The set of equa
tions consists of the following:

(a) The Equilibrium equations
(~nr)' - nfJ = 0

1
~nr - J3 q + i ~p = 0

(~m)' - ma - -l- ~q = O.
r v J3h

(b) The yield surface is that of Shapiro[5], i.e.

n/ +n/ - nrnfJ + m/ - mrmfJ +m/ + q2 - I = O.

(4)

(5)

(6)

(7)

The positive direction of the stress resultants is shown in Fig. 2. The yield surface equation
(7) is an approximation of the exact yield surface of Ilyushin[6] which is based on the von
Mises criterion, "average" yielding and linear velocities through the shell wall. Note that
this yield surface is valid only for thin shells, where the transverse normal shear stress q is
small. For these shells the boundary conditions on q at the shell surface are approximately
satisfied.

Fig. 2. Positive stress resultants.

(c) The kinematic equations are

.?.(2nr - nfJ) = U' + W

I
A(2nfJ - nr ) = ~ U + W

.?.(2mr - mfJ) = h/3'

A(2mfJ - mr) = ~ /3

.?.2J"3q = W' + /3.

(8)

(9)

(10)

(II)

(12)

In the above equations the transverse normal shear stress resultant q has been inclUded.
The effect ofq on the analysis and the resulting yield point loads has been investigated in[4].
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(d) The boundary conditions are at the shell edge ~ = c:

W = 0, mr = 0, V =°
at the shell center e= 0:

V = 0, /3 = 0, W = Wo

and from symmetry at ~ = 0:

(13)

(14)

(15)

METHOD OF SOLUTION

A numerical approach is suggested for equations (4-12). For this purpose the equations
are rewritten to make them suitable for numerical integration.

Equation (7) is solved for

(16)

This value for me is inserted into equation (6), which becomes

m' =~ - mr
_ ~ [1 _.:im 2 - q2 + 1 _ n 2 _ n 2 + n n ]1/2 (17)

r J3h 2~ ~ '4 r r ere .

Equations (8-12) yield, after elimination of the flow parameter .4,

/3' = ~ 2mr - mo
~ 2mo - m

W' =/3 [ 2J3qh -1]
~(2mo - mr)

V' = h/3 [2n r - no] _ W
~ 2mo - mr

V = e [h/3 2no - nr - w].
~ 2mo - mr

The scheme is as follows:
(a) Assume values for the shell parameters hand c and the load P.
(b) The stress resultant profile for nr is taken as

. n~
nr = A sm - + B(~ - c) + D

c

(18)

(19)

(20)

(20a)

(21)

where A, Band D are arbitrary constants.
This form of the nr distribution was chosen after trying several other forms which did

not give acceptable velocity fields. Equation (21) is also an extension of the stress field
obtained in[ll].

(c) The value of no is found from equation (4) and q is calculated from equation (5).
(d) With the 4th order Runge-Kutta method[7] equation (17) is integrated from m r and

subsequently me is found from equation (16).
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(e) Adjust the value of P until the boundary condition mr = 0 is satisfied.
(f) So far in the scheme a lower bound on the exact P has been found. This lower bound

can be improved by adjusting the values of the arbitrary constants in equation (21).
(g) To find the velocity field, equations (18-20) are integrated in turn using the Runge-

Kutta method.

It will be found that the constants in equation (21) can be adjusted readily until an admissible
velocity results. Since the assumed distribution of nr may however not include the exact nr

distribution, equations (20) and (20a) will in general give different values of the inplane
velocity U which are physically admissible. The constants in equation (21) are adjusted
until the two calculated values of U are reasonably close and both fulfil the boundary
conditions.

In the numerical integration we found that although the U velocity was very sensitive to
small changes in the parameters of equation (21), the collapse load P was not sensitive to
these changes.

The results for collapse loads obtained were taken as acceptable when changes in equation
(21) resulted in a kinematically admissible velocity field and resulted in changes of the
collapse loads P of less than 2 per cent.

(h) The end result of this iterative scheme is an admissible stress field, an admissible
velocity field and a corresponding approximate collapse load P.

The accuracy of the obtained collapse load P depends on the accuracy of the inplane
velocity U as obtained in equations (20) and (20a). The results for P given here are estimated
to be within ±2 per cent of the exact solution.

Note that when transverse shear is considered it is necessary to specify two shell param
eters independently. Since we are considering relatively thin shells, the reduction of the
collapse load due to shear is small[4]. It is therefore permissible, without loss in accuracy,
to plot the resulting collapse loads as a function of only one combined shell parameter
[e.g. cia). In[4] it has been shown that the influence of transverse shear on collapse load is
only of the order of a few percent for the shell thicknesses considered here. The present
analysis is however not simplified considerably if shear is neglected. Although transverse
shear is of minor importance for the present problem, it may be important to consider
shear effects in problems that involve discontinuous loading or variable rigidity shells.

It may be of interest to some readers that the computer time involved in the present
solution is quite small. The time used was about I sec for each value of P tried, at a certain
set of constant values of A, Band C. The system used was an IBM-360.

RESUL TS AND DISCUSSIONS

1. Restrained shell edge

The results for limit loads, using the method of analysis outlined, are shown in Fig. 3 as
curve A. Here also are shown the results obtained in[1] and[8]. The bounds on limit loads
obtained in[l] are labelled B, C and D and the upper bound solution obtained in[8] is
shown as curve F. The results of the present analysis, curve A, show good agreement with
the results of[8], which is an upper bound solution using the Tresca yield criterion.

The results for limit loads can be expressed by simple equations which are useful to the
analyst or designer. For the sake of completeness we also give the equations of[1] here.



878 A. N. SHERBOURNE and H. M. HAYDL
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Fig. 3. Limit loads of edge-restrained shallow spherical shells.

The lower bound solution (curve D) is expressed by

p* = 0·618 [I + ~ ~ ] . (22)

The upper bounds are curve B

4 z
p* = 1+ -

3H
(23)

and curve C

z
P* = I +-.

H
(24)

Curve F represents the upper bound solution of[8]. which can be written as

8 (Z)2
p* = 1 + 15 H (25)

The results of the present analysis, curve A, can be closely approximated by the equation

(
Z)k 1

p* = 1·09 + 0·63 H (26)



where the exponent

and
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. z
k = 1·5 If - < 1·0

1 'H-

Z
k 1 = 1·85 if - > 1·0., H
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Note that in arriving at equations (25) and (26) terms (;J2 ~ 1 have been neglected.

The collapse loads p* are normalized with respect to the Tresca collapse loads. For the
circular plate (z = 0) we recover from equation (22) to (25) the Tresca load p* = 1 (or
pnR1

2 = 6nMo) and from equation (26) we recover the Mises load p* = 1·09 (or pnR1
2 =

6'51nMo)

2. Unrestrained shell edge

Since no experimental evidence is available to indicate which of the formulae best predicts
the limit load of the edge-restrained shell, it is of interest to briefly examine the case of the
unrestrained shell.

Figure 4 shows some available data for the unrestrained shallow shell. Curve J shows the
results taken from[4] for which the present method of analysis has been used. The predic
tions of the theory agree quite well with experimental data (£1 to £3) taken from[9]. Experi
mental data £1 is for an extremely thick shallow shell whose parameter IY. lies outside the
range given by equation (2).

In[9] shells made of a strain hardening material were tested. The collapse (or limit)
pressure was taken as the pressure at the point of intersection of the tangents in the elastic
and plastic ranges of the respective pressure-deflection diagrams.
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Fig. 4. Limit loads of unrestrained shallow spherical shells.
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The predictions of[10] and[ll] based on the Tresca criterion are shown as curves G and H.
Again we can express the theoretical predictions by simple formulae. Curve j is approxi~

mated by

(
Z)3/2

p* = 1·09 + 0'08 H

Curve G can be expressed as

4 . )2
p* = 1+ 45 (~

and curve Has

p* = I+ /;5 (~r·
In equation (27) and (28) terms (;J 2 ~ I have been neglected.

(27)

(28)

(29)

SUMMARY AND CONCLUSIONS

Limit load solutions for edge-restrained shallow spherical shells under uniform pressure
are obtained. The analysis uses a yield surface which is based on the von Mises yield criterion.
A numerical scheme has been outlined and it is shown that the results agree with previous
analyses based on the Tresca criterion. To indicate the usefulness of the present analysis
the problem of the shell with unrestrained edge is briefly reviewed. Based on this we suggest
that the present method of analysis and results for limit loads may more accurately predict
the real problem. This can of course only be ascertained when some experimental data
becomes available for the edge-restrained shells.

The present method of analysis is an attempt to obtain exact numerical solutions to the
equations of plastic shallow shells. The scheme outlined here has the advantage that the
solution is approached from the lower bound stand point. The computations of the velocity
fields, especially the inplane velocity U, do not have to be extremely accurate to obtain
collapse loads close to the exact collapse loads. It remains to be shown if the "exact"
collapse analyses predict the real collapse of many structural members better than some
"approximate" solutions, as the one suggested here.

The numerical scheme outlined has one main disadvantage, i.e. one has to have some
insight into the problem such that a reasonable n, distribution (equation 21) is chosen at
the outset of the calculations.

The authors suggest that the present method in principle can be extended to other geo
metries, loading conditions and boundary conditions, and may be applied if other classical
limit analysis approaches fail.
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Pe310Me - B pa60Te rrplIBOAIITCJl paC'leT rrpeAerrbHoil: HarpY3KII Ha IIAearrbHO nrraCTII'lHble
c<peplI'leCKlle Kopnycbl c 3aAerraHHbIMII KpaJiMII nOABeprHyTblMII Hapyli(HoMY AaBJIeHHlO.
qllcrreHHoe pemeHlle, Ha OCHOBaHlI1I KpHTepllJl TeKy'leCTII BaH-Mail:3eca AOCTaTO'lHO xopomo
COOTBeTCTBOBaJIo CYIIIecTBylOIIIIIM npll6rrll3HTerrbHbIM pemeHHlIM no KpllTeplllO TeKy'leCTH
TpecKa.


